Human HGFR/c‑MET Biotinylated Antibody Summary
Glu25-Thr932
Accession # P08581
Applications
Human HGF R/c-MET Sandwich Immunoassay
Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.
Scientific Data
Detection of HGF R/c‑MET in MDA‑MB‑231 Human Cell Line by Flow Cytometry. MDA-MB-231 human breast cancer cell line was stained with Human HGF R/c-MET Biotinylated Antigen Affinity-purified Polyclonal Antibody (Catalog # BAF358, filled histogram) or control antibody (Catalog # BAF108, open histogram), followed by Streptavidin-Allophycocyanin (Catalog # F0050).
Reconstitution Calculator
Preparation and Storage
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 6 months, -20 to -70 °C under sterile conditions after reconstitution.
Background: HGFR/c-MET
HGF R, also known as Met (from N-methyl-N’-nitro-N-nitrosoguanidine induced), is a glycosylated receptor tyrosine kinase that plays a central role in epithelial morphogenesis and cancer development. HGF R is synthesized as a single chain precursor which undergoes cotranslational proteolytic cleavage. This generates a mature HGF R that is a disulfide-linked dimer composed of a 50 kDa extracellular alpha chain and a 145 kDa transmembrane beta chain (1, 2). The extracellular domain (ECD) contains a seven bladed beta -propeller sema domain, a cysteine-rich PSI/MRS, and four Ig-like E-set domains, while the cytoplasmic region includes the tyrosine kinase domain (3, 4). Proteolysis and alternate splicing generate additional forms of human HGF R which either lack the kinase domain, consist of secreted extracellular domains, or are deficient in proteolytic separation of the alpha and beta chains (5-7). The sema domain, which is formed by both the alpha and beta chains of HGF R, mediates both ligand binding and receptor dimerization (3, 8). Ligand-induced tyrosine phosphorylation in the cytoplasmic region activates the kinase domain and provides docking sites for multiple SH2-containing molecules (9, 10). HGF stimulation induces HGF R downregulation via internalization and proteasome-dependent degradation (11). In the absence of ligand, HGF R forms noncovalent complexes with a variety of membrane proteins including CD44v6, CD151, EGF R, Fas, Integrin alpha 6/ beta 4, Plexins B1, 2, 3, and MSP R/Ron (12-19). Ligation of one complex component triggers activation of the other, followed by cooperative signaling effects (12-19). Formation of some of these heteromeric complexes is a requirement for epithelial cell morphogenesis and tumor cell invasion (12, 16, 17). Paracrine induction of epithelial cell scattering and branching tubulogenesis results from the stimulation of HGF R on undifferentiated epithelium by HGF released from neighboring mesenchymal cells (20). Genetic polymorphisms, chromosomal translocation, overexpression, and additional splicing and proteolytic cleavage of HGF R have been described in a wide range of cancers (1). Within the ECD, human HGF R shares 86-88% aa sequence identity with canine, mouse, and rat HGF R.
- Birchmeier, C. et al. (2003) Nat. Rev. Mol. Cell Biol. 4:915.
- Corso, S. et al. (2005) Trends Mol. Med. 11:284.
- Gherardi, E. et al. (2003) Proc. Natl. Acad. Sci. USA 100:12039.
- Park, M. et al. (1987) Proc. Natl. Acad. Sci. USA 84:6379.
- Crepaldi, T. et al. (1994) J. Biol. Chem. 269:1750.
- Prat, M. et al. (1991) Mol. Cell. Biol. 12:5954.
- Rodrigues, G.A. et al. (1991) Mol. Cell. Biol. 11:2962.
- Kong-Beltran, M. et al. (2004) Cancer Cell 6:75.
- Naldini, L. et al. (1991) Mol. Cell. Biol. 11:1793.
- Ponzetto, C. et al. (1994) Cell 77:261.
- Jeffers, M. et al. (1997) Mol. Cell. Biol. 17:799.
- Orian-Rousseau, V. et al. (2002) Genes Dev. 16:3074.
- Klosek, S.K. et al. (2005) Biochem. Biophys. Res. Commun. 336:408.
- Jo, M. et al. (2000) J. Biol. Chem. 275:8806.
- Wang, X. et al. (2002) Mol. Cell 9:411.
- Trusolino, L. et al. (2001) Cell 107:643.
- Giordano, S. et al. (2002) Nat. Cell Biol. 4:720.
- Conrotto, P. et al. (2004) Oncogene 23:5131.
- Follenzi, A. et al. (2000) Oncogene 19:3041.
- Sonnenberg, E. et al. (1993) J. Cell Biol. 123:223.
Product Datasheets
Citations for Human HGFR/c‑MET Biotinylated Antibody
R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.
6
Citations: Showing 1 - 6
Filter your results:
Filter by:
-
Induction of MET Receptor Tyrosine Kinase Down-regulation through Antibody-mediated Receptor Clustering
Authors: W Li, A Dick, F Lu, H Zhang, H Sun
Sci Rep, 2019-02-13;9(1):1988.
Species: Human
Sample Types: Whole Cells
Applications: ICC -
Tumor and Plasma Met Levels in Non-Metastatic Prostate Cancer
Authors: Deborah R Kaye
PLoS ONE, 2016-06-14;11(6):e0157130.
Species: Human
Sample Types: Whole Tissue
Applications: ELISA Development (Capture) -
The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling.
Authors: Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, DeAngelo D, Cortes J, Minden M, Ebens A, Mims A, LaRue A, Kraft A
Mol Cell Biol, 2014-04-28;34(13):2517-32.
Species: Human
Sample Types: Cell Lysates
Applications: Western Blot -
A pharmacodynamic/pharmacokinetic study of ficlatuzumab in patients with advanced solid tumors and liver metastases.
Authors: Tabernero J, Elez M, Herranz M, Rico I, Prudkin L, Andreu J, Mateos J, Carreras M, Han M, Gifford J, Credi M, Yin W, Agarwal S, Komarnitsky P, Baselga J
Clin Cancer Res, 2014-03-14;20(10):2793-804.
Species: Human
Sample Types: Serum
Applications: ELISA Development (Capture) -
Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors.
Authors: Gordon MS, Sweeney CS, Mendelson DS
Clin. Cancer Res., 2010-01-12;16(2):699-710.
Species: Human
Sample Types: Plasma
Applications: Electrochemiluminescent Assay -
Soluble c-Met receptors inhibit phosphorylation of c-Met and growth of hepatocyte growth factor: c-Met-dependent tumors in animal models.
Authors: Coxon A, Rex K, Meyer S, Sun J, Sun J, Chen Q, Radinsky R, Kendall R, Burgess TL
Mol. Cancer Ther., 2009-05-12;0(0):.
Species: Human
Sample Types: Cell Lysates
Applications: Electrochemiluminescent Assay
FAQs
No product specific FAQs exist for this product, however you may
View all Antibody FAQsReviews for Human HGFR/c‑MET Biotinylated Antibody
There are currently no reviews for this product. Be the first to review Human HGFR/c‑MET Biotinylated Antibody and earn rewards!
Have you used Human HGFR/c‑MET Biotinylated Antibody?
Submit a review and receive an Amazon gift card.
$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image
$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image